Algebra \& Equations Homework

References:

Answers:
services.nietc.org
Khan Academy:
https://www.khanacademy.org/math/algebra-home
Math is Fun:
https://www.mathsisfun.com/algebra/index.html
Purple Math:
http://www.purplemath.com/modules/solvelin.htm
NOTE: Subscripts (i.e. $\mathrm{X}_{\mathrm{L}}, \mathrm{X}_{\mathrm{C}}$) are used to differentiate between variables. These variables may have similar properties, but are still separate variables. For example: R_{1} and R_{2} will be used as variables for resistor \#1 and resistor \#1 in a circuit. Both are measured in Ohms but will likely have different values.

QUESTIONS:

1) Change the following rule into a formula:

The Power In Watts (P) In A Circuit Is Equal To The Voltage (E) Multiplied By The Current (I). Answer:
a. $I=P \times E$
b. $E=I \times P$
c. $P=E \times I$
d. $P=1 \times E^{2}$
2) Change the following rule into a formula.

The Resistance In Ohms (R) In A Circuit Is Equal To The Voltage (E) Divided By The Current (I). Answer:
a. $E=I \div R$
b. $I=E \div R$
c. $R=I \div E$
d. $R=E \div I$
3) Find the value of the variable A in the equation: $A=\frac{B H}{2}$

If $B=13$ And $H=5$.
Answer:
a. 30.2
b. 32.5
c. 65
d. 65.7
4) $A \times B=A B$ if $A B=63$ and $B=12.6$, what is the value of A ?

Answer:
e. $A=3$
f. $A=5$
g. $A=7$
h. $A=9$
5) How could someone prove he or she answered the previous question correctly? Answer:
i. Run the calculation(s) again to test the equation.
j. Substitute any values into the original equation and verify the equality.
k. Substitute the original values into the original equation and verify equality.
I. Substitute the calculated values into the original equation and verify equality.
6) If a person multiplies one side of an equation by five, what must he or she do to the other side of the equation?
Answer:
a. Add five.
b. Divide by five.
c. Multiply by five.
d. Subtract five.
7) Solve the following equation: $15 Y=90$

Answer:
a. $Y=0.166$
b. $Y=5$
c. $Y=6$
d. $Y=9$
8) To solve $15 Y=90$, a person must ? each side of the equation by ?.

Answer:
a. divide by 15
b. divide by 90
c. multiply by 15
d. multiply by 90
9) Solve for R in the following equation: $\frac{R}{5}=6$
Answer:
a. 15
b. 30
c. 36
d. 40
10) To solve $A+17=20$, a person must ? each side of the equation.

Answer:
a. add 17 to
b. divide 17 on
c. multiply by 17 on
d. subtract 17 from
11) Solve the following equation: $A+17=20$

Answer:
a. $A=-3$
b. $A=2$
c. $A=3$
d. $A=7$
12) To solve $A-7=17$, a person must ? each side of the equation.

Answer:

\rightarrow a. add 7 to
b. divide 7 on
c. multiply by 7 on
d. subtract 7 from
13) Solve the following equation: $A-7=17$

Answer:
a. 10
b. 14
c. 21
d. 24
14) Solve the following equation for X : $\frac{(3 X)}{3}=\frac{(4-1)}{3}$
Answer:
a. $1 \div 3$
b. 1
c. 3
d. X
15) Solve the following for $X: 45 X=\frac{120}{2}$
Answer:
a. $X=0.075$
b. $X=1.33$
c. $X=2.667$
d. $X=4,050$
16) Solve the following for $X: \quad X-\left(\frac{7}{2}\right)=120$
Answer:
a. $X=60$
b. $X=116.5$
c. $X=-123.5$
d. $X=123.5$
17) Solve the following for X : $\frac{128}{X}=64$
Answer:
a. $X=0.2$
b. $X=1 \div 2$
c. $X=0.75$
d. $X=2.0$
18) $A(n) \quad$? is a shorthand method for writing a mathematical rule.

Answer:
a. equal sign (=)
b. equation
c. formula
d. math problem
19) The multiplication of two or more quantities may be expressed as the \qquad of the same quantities. Answer:
a. dividend
b. product
c. quotient
d. sum
20) Division of two quantities is expressed as the \qquad of those two quantities.
Answer:
a. dividend
b. product
c. quotient
d. sum
21) ? is expressed as the sum of a given number of quantities.

Answer:
a. Addition
b. Multiplication
c. Subtraction
d. The square of a number
22) Subtraction is expressed as the \qquad two quantities.
Answer:
a. difference between
b. division of
c. ratio of
d. sum of
23) Select the correct Ohm's Law formula that will solve for E when only I and R are known.

Answer:
a.
$\begin{array}{ll}\text { a. } & E=\frac{I}{R} \\ \text { b. } & E=I \times R\end{array}$
c. $E=\frac{P}{I}$
d. $E=\sqrt{P \times R}$
24) Given: $X=Y-8, X=2 Y$, Solve for X :

Answer:
a. $X=-8$
b. $X=8$

$$
\begin{aligned}
& 2 Y=Y-8 \\
& Y=-8 \\
& X=2 \times(-8) \\
& X=-16
\end{aligned}
$$

c. $X=-16$
d. $X=16$

For questions 25-30 use the formulas: $E=I \times R$ and $P=E \times I$
25) Solve for E when only I and P are known.

Answer:

$$
E=\frac{P}{I}
$$

26) Solve for E when only R and P are known.

Answer:

$$
E=\sqrt{P \times R}
$$

27) Solve for R when only E and I are known.

Answer:

$$
R=\frac{E}{I}
$$

28) Solve for R when only E and P are known.

Answer:

$$
R=\frac{E^{2}}{P}
$$

29) Solve for R when only I and P are known.

Answer:

$$
R=\frac{P}{I^{2}}
$$

30) Given: $I=150 \mu \mathrm{~A} \quad R=450 \mathrm{k} \Omega$, Solve for: E (in volts)

Answer:
a. 6.75 Volts
b. 67.5 Volts
c. 675.0 Volts
$E=0.000150 \times 450,000$
d. 6,750.0 Volts
31) Given: $R_{1}=10 \quad R_{2}=20 \quad R_{3}=30 \quad I_{2}=5 I_{3}=2$
$100=I_{1} \times R_{1}+I_{2} R_{2}+I_{3} R_{3}$
Solve for I_{1}
Answer:
a. $\quad I_{1}=-0.1667$
$100=10(11)+20(5)+$
b. $I_{1}=0.1667$ 30(2)
c. $I_{1}=-6$

$$
100=10(11)+100+60
$$

d. $I_{1}=6$
$100=10(11)+160$
$-60=10(11)$
$-6=11$ or $11=-6$
32) Given: $I_{N}=10 \mathrm{Amps} R_{N}=2 \Omega R_{L}=3 \Omega$
$I_{L}=I_{N} \times \frac{R_{N}}{R_{N}+R_{L}}$
Solve for I_{L}
Answer:
a. $I_{L}=0.25 \mathrm{Amps}$
b. $I_{L}=4.0 \mathrm{Amps}$
c. $I_{L}=10 \mathrm{Amps}$
d. $I_{L}=25 \mathrm{Amps}$
33) Solve the following equation for HP: Amps $=\frac{H P \times 746}{E \times E f f i c i e n c y \times P_{f}}$

Method \#1
$\frac{1}{H P} \times$ Amps $=\frac{\text { HP } \times 746}{E \times \text { Efficiency } \times P_{f}} \times \frac{1}{H P}$
$\frac{1}{\text { Amps }} \times \frac{\text { Antps }}{H P}=\frac{746}{E \times \text { Efficiency } \times P_{f}} \times \frac{1}{A m p s}$
$\zeta \frac{1}{H P}=\frac{746}{E \times \text { Efficiency } \times P_{f} \times \text { Amps }}$)

Method \#2
$H P=\frac{E \times \text { Efficiency } \times P_{f} \times \text { Amps }}{746}$

$$
\frac{A m p s}{1}=\frac{H P \times 746}{E \times \text { Efficiency } \times P_{f}}
$$

$$
\frac{E \times \text { Efficiency } \times P_{f}}{746} \times \frac{A m p s}{1}=\frac{H P \times 746}{E \times E f f} \times \frac{E \times E f f \times P_{f}}{746}
$$

34) Solve the following formula for $P_{f}: \quad K W=\frac{E \times I \times P_{f} \times \sqrt{3}}{1000}$

$$
\begin{gathered}
\frac{K W}{1}=\frac{E \times I \times P_{f} \times \sqrt{3}}{1000} \\
\frac{1000}{E \times I \times \sqrt{3}} \times \frac{K W}{1}=\frac{E \times T \times P_{f} \times \sqrt{3}}{1000} \times \frac{1000}{E \times T \times \sqrt{3}} \\
\frac{1000 \times K W}{E \times I \times \sqrt{3}}=P_{f}
\end{gathered}
$$

35) Solve the following for $\mathrm{E}_{\mathrm{L}-\mathrm{L}}: \quad f=\frac{1.732 \times L \times I_{3 \theta}}{C \times E_{L-L}}$

$$
\begin{aligned}
E_{L-L} \times f & =\frac{1.732 \times L \times I_{3 \theta}}{C \times E_{L-L}} \times E-L \\
\frac{E_{L-L} \times f}{f} & =\frac{1.732 \times L \times I_{3 \theta}}{C \times E_{L-L}} \times \frac{1}{f} \\
E_{L-L} & =\frac{1.732 \times L \times I_{3 \theta}}{C \times f}
\end{aligned}
$$

36) CHALLENGE: solve for R_{2} if $R_{t}=6, R_{1}=12, R_{3}=30$ and the following formula is true:

$$
\begin{aligned}
& R_{t}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1} \\
& R_{t}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1} \\
& R_{t}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} \\
& \frac{R_{t}}{1}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} \\
& \left.C \frac{R_{t}}{1}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{R_{t}}-\left(\frac{1}{R_{1}}+\frac{1}{R_{3}}\right)=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}-\left(\frac{1}{R_{1}}+\frac{1}{R_{3}}\right) \\
& \text { C } \left.\frac{1}{R_{t}}-\left(\frac{1}{R_{1}}+\frac{1}{R_{3}}\right)=\frac{1}{R_{2}}\right) \\
& \frac{1}{\frac{1}{R_{t}}-\left(\frac{1}{R_{1}}+\frac{1}{R_{3}}\right)}=R_{2} \\
& \left(\frac{1}{R_{t}}-\left(\frac{1}{R_{1}}+\frac{1}{R_{3}}\right)\right)^{-1}=R_{2} \\
& \left(\frac{1}{6}-\left(\frac{1}{12}+\frac{1}{30}\right)\right)^{-1}=20
\end{aligned}
$$

